High-sustained positive acceleration (+Gz) exposures might lead to impairment in cognitive function. Our previous studies have shown that electroacupuncture (EA) pretreatment can attenuate transient focal cerebral ischemic injury in the rats. In this study we aimed to investigate whether EA pretreatment could ameliorate the impairment of learning and memory induced by a sustained +Gz exposure. Using the centrifuge model, rats of experimental groups were exposed to +10 Gz for 5 min. Morris water maze was used for assessing the cognitive ability, and the apoptotic hippocampal CA1 pyramidal neuronal cells were evaluated by caspase-3 activity and TUNEL staining. Our results showed that +Gz exposure significantly caused pyramidal neuronal damage, increased neuronal apoptosis and caspase-3 activity in hippocampal CA1 region, as well as resulted in an impairment of spatial learning and memory, as compared to the sham group animals. Furthermore, the EA pretreatment significantly attenuated the neuronal apoptosis, preserved neuronal morphology and inhibited the caspase-3 activity in hippocampal CA1 region resulted from +Gz exposure. The EA pretreatment also ameliorated the learning and memory function in rats exposed to +Gz. These findings indicate that EA pretreatment provides a novel method to prevent the cognitive damage caused by +Gz, which could significantly protect neuronal damage and impairment of learning and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2010.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!