Using rat brain slice preparations, we examined the effect of orexin on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in the granule cell domain (GCD) cells of the cochlear nucleus that carry non-auditory information to the dorsal cochlear nucleus. Application of orexin concentration-dependently increased [Ca(2+)](i), and in two thirds of GCD cells these increases persisted in the presence of tetrodotoxin. There was no significant difference between the dose-response curve for orexin-A and that for orexin-B. Extracellular Ca(2+) removal abolished the [Ca(2+)](i) elevation induced by orexin-B, whereas depletion of intracellular Ca(2+) stores had no effect. The orexin-B-induced elevation of [Ca(2+)](i) was not blocked by inhibitors of reverse-mode Na(+)/Ca(2+) exchanger (NCX) and nonselective cation channel, whereas it was blocked by lowering the extracellular Na(+) or by applying inhibitors of forward-mode NCX and voltage-gated R- and T-type Ca(2+) channels. The ORX-B-induced increase in [Ca(2+)](i) was also blocked by inhibitors of adenylcyclase (AC) and protein kinase A (PKA), but not by inhibitors of phosphatidylcholine-specific and phosphatidylinositol-specific phospholipase C. In electrophysiological experiments using whole-cell patch clamp recordings, half of GCD cells were depolarized by orexin-B, and the depolarization was abolished by a forward-mode NCX inhibitor. These results suggest that orexin increases [Ca(2+)](i) postsynaptically via orexin 2 receptors, and the increase in [Ca(2+)](i) is induced via the AC-PKA-forward-mode NCX-membrane depolarization-mediated activation of voltage-gated R- and T-type Ca(2+) channels. The results further support the hypothesis that the orexin system participates in integrating neural systems that are involved in arousal, sensory processing, energy homeostasis and autonomic function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2010.04.029 | DOI Listing |
Neuroimage
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:
In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFNeurosci Res
January 2025
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan. Electronic address:
Sensorineural hearing loss causes cell death in central auditory neurons, but molecular mechanisms of triggering this process are not fully understood. We report here that loss of afferent activity promotes cell death by facilitating proBDNF-p75NTR signals in cochlear nucleus of chicks around hatch. RNA-seq analyses revealed up-regulation of genes related to proBDNF-p75NTR-JNK signals as well as apoptosis at the nucleus within 24hours after unilateral cochlea deprivation.
View Article and Find Full Text PDFLaryngoscope
January 2025
Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington, USA.
Objective: To provide evidence to use an extended frequency pure tone average to screen for cochlear implant evaluation candidates as recommended by the American Cochlear Implant Alliance. Additionally, to determine whether traditional low frequency, high or low frequency, high frequency, or extended frequency pure tone average most accurately predicts cochlear implant candidates based on speech perception scores from aided AzBio sentence testing or aided consonant-nucleus-consonant (CNC) testing.
Method: Adults from a tertiary care center who completed aided sentence testing during cochlear implant evaluation between 2014 and 2024 were assessed.
Acta Otolaryngol
January 2025
Department of Otolaryngology, Hacettepe University School of Medicine, Ankara, Turkey.
Background: The intraoperative measurements are essential steps in cochlear implant (CI) surgery for confirming correct electrode placement.
Objectives: To examine the intraoperative impedance and electrically evoked action potential (ECAP) measurement results of cochlear implant (CI) users with normal cochlear anatomy (NCA) and to compare them with CI users with inner ear malformations (IEM).
Material And Methods: This retrospective study included intraoperative data of 300 ears from 258 individuals using Medel and Cochlear (Nucleus) CI devices.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!