Previous work suggests a role for dopamine D3-like receptors in psychostimulant reinforcement. The development of new compounds acting selectively at dopamine D3 receptors has opened new possibilities to explore the role of these receptors in animal models of psychostimulant dependence. Here we investigated whether the dopamine D3 partial agonist CJB090 (1-10 mg/kg, i.v) and the D3 antagonist PG01037 (8-32 mg/kg, s.c.) modified methamphetamine (0.05 mg/kg/injection) intravenous self-administration under fixed- (FR) and progressive- (PR) ratio schedules in rats allowed limited (short access, ShA; 1-hour sessions 3 days/week) or extended access (long access, LgA; 6 hour sessions 6 days/week). Under a FR1 schedule, the highest dose of the D3 partial agonist CJB090 selectively reduced methamphetamine self-administration in LgA but not in ShA rats, whereas the full D3 antagonist PG01037 produced no effect in either group. Under a PR schedule of reinforcement, the D3 partial agonist CJB090 reduced the maximum number of responses performed ('breakpoint') for methamphetamine in LgA rats at the doses of 5 and 10 mg/kg, and also it produced a significant reduction in the ShA group at the highest dose. However, the D3 full antagonist PG01037 only reduced PR methamphetamine self-administration in LgA rats at the highest dose of 32 mg/kg with no effect in the ShA group. The results suggest that rats might be more sensitive to pharmacological modulation of dopamine D3 receptors following extended access to methamphetamine self-administration, opening the possibility that D3 receptors play a role in excessive methamphetamine intake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903631PMC
http://dx.doi.org/10.1111/j.1369-1600.2010.00211.xDOI Listing

Publication Analysis

Top Keywords

partial agonist
16
agonist cjb090
16
antagonist pg01037
16
highest dose
12
methamphetamine self-administration
12
dopamine receptors
8
sessions days/week
8
extended access
8
reduced methamphetamine
8
self-administration lga
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!