Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and no diagnostic markers have, as of yet, been defined. In PDAC patients, α-enolase (ENOA) is up-regulated and elicits the production of autoantibodies. Here, we analyzed the autoantibody response to post-translational modifications of ENOA in PDAC patients. ENOA isolated from PDAC tissues and cell lines was characterized by two-dimensional electrophoresis (2-DE) Western blot (WB), revealing the expression of six different isoforms (named ENOA1,2,3,4,5,6) whereas only 4 isoforms (ENOA3,4,5,6) were detectable in normal tissues. As assessed by 2-DE WB, 62% of PDAC patients produced autoantibodies to the two more acidic isoforms (ENOA1,2) as opposed to only 4% of controls. Mass spectrometry showed that ENOA1,2 isoforms were phosphorylated on serine 419. ROC analysis demonstrated that autoantibodies to ENOA1,2 usefully complement the diagnostic performance of serum CA19.9 levels, achieving approximately 95% diagnostic accuracy in both advanced and resectable PDAC. Moreover, the presence of autoantibodies against ENOA1,2 correlated with a significantly better clinical outcome in advanced patients treated with standard chemotherapy. In conclusion, our results demonstrate that ENOA phosphorylation is associated with PDAC and induces specific autoantibody production in PDAC patients that may have diagnostic value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr100213b | DOI Listing |
Pancreatology
December 2024
Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Electronic address:
Background: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has become essential for diagnosing pancreatic ductal adenocarcinoma (PDAC) and is increasingly utilized for comprehensive genome profiling (CGP) to advance precision medicine. This systematic review and meta-analysis assess the feasibility and clinical utility of EUS-TA samples for CGP in PDAC.
Methods: We conducted a thorough systematic literature search in PubMed, EMBASE, and the Cochrane Library up to October 2023.
Cancer Sci
December 2024
Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
Background: Smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). This study aimed to investigate the effects of smoking on the pancreatic microbiome and metabolome in resectable and unresectable male PDAC patients.
Methods: The pancreatic tissue samples were collected from resectable PDACs via surgery and unresectable PDACs via endoscopic ultrasound fine needle aspiration (EUS-FNA).
Semin Cancer Biol
December 2024
Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) has a minimal (<15%) 5-year existence, in part due to resistance to chemoradiotherapy. Previous research reveals the impact of paricalcitol (P) and hydroxychloroquine (H) on altering the lysosomal fusion, decreasing stromal burden, and triggering PDAC to chemotherapies. This investigation aims to elucidate the molecular properties of the H and P combination and their potential in sensitizing PDAC to gemcitabine (G).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!