Estimating the confidence of peptide identifications without decoy databases.

Anal Chem

Interdisciplinary Center for Scientific Computing, University of Heidelberg, Speyerer Strasse 6, 69115 Heidelberg, Germany.

Published: June 2010

Using decoy databases to compute the confidence of peptide identifications has become the standard procedure for mass spectrometry driven proteomics. While decoy databases have numerous advantages, they double the run time and are not applicable to all peptide identification problems such as error-tolerant or de novo searches or the large-scale identification of cross-linked peptides. Instead, we propose a fast, simple and robust mixture modeling approach to estimate the confidence of peptide identifications without the need for decoy database searches, which automatically checks whether its underlying assumptions are fulfilled. This approach is then evaluated on 41 LC/MS data sets of varying complexity and origin. The results are very similar to those of the decoy database strategy at a negligible computational cost. Our approach is applicable not only to standard protein identification workflows, but also to proteomics problems for which meaningful decoy databases cannot be constructed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac902892jDOI Listing

Publication Analysis

Top Keywords

decoy databases
16
confidence peptide
12
peptide identifications
12
identifications decoy
8
decoy database
8
decoy
6
estimating confidence
4
peptide
4
databases
4
databases decoy
4

Similar Publications

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Plasmapheresis for extracorporeal membrane oxygenation (ECMO)-induced hemolysis in infants.

J Extra Corpor Technol

December 2024

Division of Pediatric Nephrology, Joe DiMaggio Children's Hospital, 1131 N35th Ave, Hollywood, FL 33021, USA - Charles E. Schmidt College of Medicine at Florida Atlantic University, 777 Glades Rd BC-71, Boca Raton, FL 33431, USA.

Background: Intravascular hemolysis is a known complication of extracorporeal membrane oxygenation (ECMO). Characterized by elevated plasma-free hemoglobin (PFH), intravascular hemolysis is associated with cytotoxic effects leading to renal replacement therapy (RRT), longer ECMO runs, and mortality. Therapeutic plasma exchange (TPE) in tandem with ECMO was described as a therapy for various pathologic conditions, but there are no Extracorporeal Life Support Organization (ELSO) guidelines for the treatment of ECMO-induced hemolysis.

View Article and Find Full Text PDF

Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies.

Mol Syst Biol

January 2025

Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.

Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases.

View Article and Find Full Text PDF

Developing selective kinase inhibitors remains a formidable challenge in drug discovery because of the highly conserved structural information on adenosine triphosphate (ATP) binding sites across the kinase family. Tailoring docking protocols to identify promising kinase inhibitor candidates for optimization has long been a substantial obstacle to drug discovery. Therefore, we introduced "Kinase-Bench," a pioneering benchmark suite designed for an advanced virtual screen, to improve the selectivity and efficacy of kinase inhibitors.

View Article and Find Full Text PDF

Even though COVID-19 is no longer the primary focus of the global scientific community, its high mutation rate (nearly 30 substitutions per year) poses a threat of a potential comeback. Effective vaccines have been developed and administered to the population, ending the pandemic. Nonetheless, reinfection by newly emerging subvariants, particularly the latest JN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!