The impacts of three charged-residue-involved mutations, E46A, R3E, and R3E/L66E, on the thermostability and folding behavior of the cold shock protein from the themophile Bacillus caldolyticus (Bc-Csp) were investigated by using a modified Gō-like model, in which the nonspecific electrostatic interactions of charged residues were taken into account. Our simulation results show that the wild-type Bc-Csp and its three mutants are all two-sate folders, which is consistent with the experimental observations. It is found that these three mutations all lead to a decrease of protein thermodynamical stability, and the effect of R3E mutation is the strongest. The lower stability of these three mutants is due to the increase of the enthalpy of the folded state and the entropy of the unfolded state. Using this model, we also studied the folding kinetics and the folding/unfolding pathway of the wild-type Bc-Csp as well as its three mutants and then discussed the effects of electrostatic interactions on the folding kinetics. The results indicate that the substitutions at positions 3 and 46 largely decrease the folding kinetics, whereas the mutation of residue 66 only slightly decreases the folding rate. This result agrees well with the experimental observations. It is also found that these mutations have little effects on the folding transition state and the folding pathway, in which the N-terminal beta sheet folds earlier than the C-terminal region. We also investigated the detailed unfolding pathway and found that it is really the reverse of the folding pathway, providing the validity of our simulation results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.22730 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
DVGW-Research Center at the Engler-Bunte-Institute, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!