To assess RNAi mediated inhibition of the expression of wt-DYT1 on H(2)O(2)-induced toxicity in NIH 3T3 cells and primary cortical neurons. To detect the function of wild-type Torsin A and the effect of SiRNA on the wt-DYT1 gene. The shRNA expression vector was constructed by ligating annealed complementary shRNA oligonucleotides into the down-stream of the human U6 promoter (PU6) of the RNAi-ready pSIREN-Shuttle vector. Then, the pSIREN-Shuttle-DYT1-shRNA cassette was ligated to Adeno-X Viral DNA to construct the recombinant adenoviral vector pAd-DYT1-shRNA. Cultured cerebral cortical neurons and NIH 3T3 cells were transfected with pAd-DYT1-shRNA and pSIREN-Shuttle-DYT1-shRNA. We evaluated NIH 3T3 cells and neurons in the presence of oxidative stress using a TUNEL assay under different conditions. The knockdown efficacy of the DYT1 was confirmed by real-time RT-PCR and Western Blot analysis. After exposure to H(2)O(2,) the quantity of NIH 3T3 cells transfected with pSIREN-Shuttle-DYT1-shRNA, which stained positively in the TUNEL assay, was significantly higher than the cells transfected with pSIREN-Shuttle-negative control-shRNA. (44.85 +/- 1.81% vs. 8.98 +/- 2.73%, t = 26.168). There were significantly more apoptotic neurons infected with pAd-DYT1-shRNA (45.63 +/- 7.53%) than neurons infected with pAd-X-negative control-shRNA (17.33 +/- 2.43%) (t = 9.816). The observed silencing of wild-type Torsin A expression by DYT1-shRNA was sequence-specific. RNAi-mediated inhibition of the expression of wild-type Torsin A increases apoptosis caused by oxidative stress. It is reasonable to consider that wild-type Torsin A has the capacity to protect cortical neurons against oxidative stress, and in the development of DYT1-delta GAG-dystonia the neuroprotective function of wild-type Torsin A may be compromised.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-010-0177-4DOI Listing

Publication Analysis

Top Keywords

wild-type torsin
24
oxidative stress
16
nih 3t3
16
3t3 cells
16
cortical neurons
12
cells transfected
12
torsin expression
8
increases apoptosis
8
apoptosis caused
8
caused oxidative
8

Similar Publications

Divergent effects of tumor necrosis factor (TNF) in sepsis: a meta-analysis of experimental studies.

Crit Care

September 2024

Department of Anesthesiology and Surgical Intensive Care, DMU PARABOL, AP-HP, Hôpital Bichat, 75018, Paris, France.

Introduction: Experimental studies in animals have yielded conflicting results on the role of Tumor Necrosis Factor (TNF) in sepsis and endotoxemia, with some reporting adaptive and others inappropriate effects. A meta-analysis of the available literature was performed to determine the factors explaining this discrepancy.

Methods: The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

View Article and Find Full Text PDF

Childhood-onset torsin dystonia (DYT1) is a rare hereditary movement disorder and usually caused by a heterozygous GAG deletion (c.907-909) in the TOR1A gene (ΔE, p.Glu303del).

View Article and Find Full Text PDF

Neuropathic pain is characterized by mechanical allodynia and thermal hyperalgesia to heat, and it affects some 20% of European population. Patients suffering from several neurologic diseases experience neuropathic pain, often finding no relief in therapy. Transgenic mice expressing the gene encoding the human mutant (hMT) or the human wild-type (hWT) torsin A represent a preclinical model of DYT1 dystonia which is the most common form of early-onset inherited dystonia.

View Article and Find Full Text PDF

Background: DYT1 dystonia is the most common form of early-onset inherited dystonia, which is caused by mutation of torsin A (TA) belonging to the "ATPases associated with a variety of cellular activities" (AAA + ATPase). Dystonia is often accompanied by pain, and neuropathic pain can be associated to peripherally induced movement disorder and dystonia. However, no evidence exists on the effect of gabapentin in mice subjected to neuropathic pain model overexpressing human normal or mutated TA.

View Article and Find Full Text PDF

The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how this occurs remains ill-understood. Unexpectedly, we observed that an imbalance in the levels of the lamina-associated polypeptide 1 (LAP1), an activator of ER-resident Torsin AAA+-ATPases, causes a failure in membrane removal from mitotic chromatin, accompanied by chromosome segregation errors and changes in post-mitotic nuclear morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!