A highly sensitive and specific dot-enzyme immunoassay for the rapid identification of Candida albicans was developed using a murine monoclonal antibody (Mab), which adsorbed to cell surface-exposed determinants. This Mab reacted with 28 of the 28 C. albicans strains tested including the serotypes A and B and 2 C. stellatoidea. It did not react with 32 other isolates representing eight other Candida species commonly encountered in human materials. All the test could be performed in four steps in less than an hour. The yeasts were directly spotted on a strip of immunodyne membrane. Then the strip was incubated for 5 min. with the Mab, for 15 min. with a peroxidase-conjugate and for 30 min. with the enzyme substrate and 4-chloro 1 naphthol. This test proved useful for rapid and easy identification of C. albicans.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01971529108055068DOI Listing

Publication Analysis

Top Keywords

rapid identification
8
identification candida
8
candida albicans
8
dot-enzyme immunoassay
8
albicans
4
albicans dot-enzyme
4
immunoassay highly
4
highly sensitive
4
sensitive specific
4
specific dot-enzyme
4

Similar Publications

Detecting CYP2C19 genes through an integrated CRISPR/Cas13a-assisted system.

Anal Methods

January 2025

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

CYP2C19 gene single nucleotide polymorphisms (SNPs) should be considered in the clinical use of clopidogrel as they have important guiding value for predicting the risk of bleeding and thrombosis after clopidogrel treatment. The CRISPR/Cas system is increasingly used for SNP detection owing to its single-nucleotide mismatch specificity. Simultaneous detection of multiple SNPs for rapid identification of the CYP2C19 genotype is important, but there is no method to detect a wide variety of CYP2C19 SNPs.

View Article and Find Full Text PDF

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Current methods for detecting and assessing HIV-1 antibody resistance.

Front Immunol

January 2025

Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Antiretroviral therapy is the standard treatment for HIV, but it requires daily use and can cause side effects. Despite being available for decades, there are still 1.5 million new infections and 700,000 deaths each year, highlighting the need for better therapies.

View Article and Find Full Text PDF

A 34-year-old paint mixer presented with mild, localized dermatitis on the forearms, traced to low-level exposure to a paint additive. Immediate interventions, including improved personal protective equipment (PPE) and modified job tasks, led to rapid symptom resolution. This report highlights early identification, appropriate workplace controls, and follow-up measures that prevent long-term complications.

View Article and Find Full Text PDF

The drug resistance problem of needs to be solved urgently. Here, we report the rapid identification of human antibodies by high-throughput single-cell RNA and VDJ sequencing of memory B cells derived from 64 volunteers immunized with recombinant five-component vaccine (clinical phase I). From 676 antigen-binding IgG1 clonotypes, TOP10 sequences were selected for expression and characterization, with the most potent one, Abs-9, having nanomolar affinity for the pentameric form of the specific antigen protein A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!