A novel shoulder-elbow mechanism for increasing speed in a multijoint arm movement.

Exp Brain Res

Department of Physiology and Pharmacology, The University of Western Ontario, Medical Science Bldg, London, ON, N6A 5C1, Canada.

Published: June 2010

The speed of arm movements is normally increased by increasing agonist muscle activity, but in overarm throwing, an additional effect on speed may come from exploitation of interaction torques (a passive torque associated with motion at adjacent joints). We investigated how the central nervous system (CNS) controls interaction torques at the shoulder and elbow to increase speed in 2-D overarm throwing. Twelve experienced throwers made slow, medium, and fast 2-D throws in a parasagittal plane. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. For slow and medium-speed throws, elbow extension was primarily produced by elbow muscle torque. For fast throws, there was an additional late-occurring elbow extensor interaction torque. Parceling out this elbow extension interaction torque revealed that it primarily arose from shoulder extension deceleration. Surprisingly, shoulder deceleration before ball release was not caused by shoulder flexor (antagonist) muscle torque. Rather, shoulder deceleration was produced by passive elbow-to-shoulder interaction torques that were primarily associated with elbow extension acceleration and velocity. It is concluded that when generating fast 2-D throws, the CNS utilized the arm's biomechanical properties to increase ball speed. It did this by coordinating shoulder and elbow motions such that an instantaneous mechanical positive feedback occurred of interaction torques between shoulder and elbow before ball release. To what extent this mechanism is utilized in other fast multijoint arm movements remains to be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-010-2270-yDOI Listing

Publication Analysis

Top Keywords

interaction torques
16
shoulder elbow
12
elbow extension
12
multijoint arm
8
arm movements
8
overarm throwing
8
torques shoulder
8
elbow
8
fast 2-d
8
2-d throws
8

Similar Publications

POLYSORBATE 80 AND CARBOXYMETHYLCELLULOSE: A DIFFERENT IMPACT ON EPITHELIAL INTEGRITY WHEN INTERACTING WITH THE MICROBIOME.

Food Chem Toxicol

January 2025

Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain. Electronic address:

The consumption of dietary emulsifiers, including polysorbate 80 (P80) and sodium carboxymethylcellulose (CMC), has raised safety concerns due to its interaction with the intestinal microbiome. This study demonstrated that increasing concentrations of P80 and CMC added to a dynamic four-stage gut microbiota model (BFBL gut simulator) altered the microbiome composition and impacted epithelial integrity in a dose-dependent manner. 16S rDNA amplicon-based metagenomics analysis revealed that these emulsifiers increased microbial groups with proinflammatory capacities while decreasing microbial taxa known to enhance barrier function.

View Article and Find Full Text PDF

Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.

View Article and Find Full Text PDF

In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.

View Article and Find Full Text PDF

: The study aimed to assess the dynamics of changes in the torques of derotating and redressing forces acting on the apexes of deformation curvature arches during active, kyphosis-inducing exercises using the D4S device. : The study group included 12 girls aged 9 to 10 years (age X = 9.36, SD = 1.

View Article and Find Full Text PDF

: This study aimed to evaluate the primary stability, according to the insertion torque value (ITV) and resonance frequency analysis (RFA), of dental implants placed in standardized blocks of bone quality equivalent to type II-A bone, using three surgical undersized protocols of 0.2 mm, 0.5 mm, and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!