Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced (13)C-(13)C and (15)N-(13)C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440577PMC
http://dx.doi.org/10.1039/c003661gDOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
dynamic nuclear
8
gnnqqny nanocrystals
8
nanocrystals amyloid
8
amyloid fibrils
8
nmr experiments
8
low temperature
8
nuclear polarization-enhanced
4
polarization-enhanced solid-state
4
nmr spectroscopy
4

Similar Publications

Evaluation of Performance and Stability of a Gel-Type Polymer Sorbent for Recovery of Phosphate from Waste Streams.

ACS Appl Polym Mater

December 2024

School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, BT9 5AG Belfast, Northern Ireland, U.K.

Phosphorus (P) fertilizer is an essential component of our food system with the majority of all mined P rock processed to make mineral fertilizers. Globally however P rock stocks are declining-both in quality and quantity-with poor P management creating a linear economic system where P is mined, globally redistributed into products and eventually discharged into the environment leading to eutrophication. To enable establishment of a circular P economy, whereby P can be recovered from waste for its industrial reuse, requires the development of effective P recovery technologies.

View Article and Find Full Text PDF

NMR Spectroscopic Reference Data of Synthetic Cannabinoids Sold on the Internet.

Magn Reson Chem

January 2025

Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria.

Besides classic illegal drugs, numerous designer drugs, also called new psychoactive substances (NPSs), are available on the global drug market. One of the biggest and fastest-growing substance classes comprises the synthetic cannabinoids. According to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), 254 out of 950 monitored substances belong to this group of NPS, with 9 new cannabinoids registered for the first time in 2023.

View Article and Find Full Text PDF

In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).

View Article and Find Full Text PDF

Optimal control: From sensitivity improvement to alternative pulse-sequence design in solid-state NMR.

Solid State Nucl Magn Reson

December 2024

Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842, Prague, Czech Republic.

Exciting developments in new experimental methods for multidimensional solid-state NMR spectroscopy have recently been achieved using optimal-control theory. These results, in turn, have triggered the development of new pulse sequences based on traditional analytical theories. This trend article summarises the key steps leading to these advancements.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.

Subcell Biochem

December 2024

IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.

Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!