Quantitative determination of protein stability and ligand binding using a green fluorescent protein reporter system.

Mol Biosyst

Comparative Genomics Centre, School of Pharmacy & Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia.

Published: July 2010

Information about the stability of proteins is paramount to determine their optimal storage or reaction conditions. It is also essential to determine protein stability in high-throughput when screening for new or improved functions of proteins obtained from large mutant libraries. In drug discovery programs, monitoring of ligand-induced stabilization effects can be used to identify lead compounds in high-throughput. These studies require expensive biophysical instrumentation and large quantities of purified proteins. To address these issues, we developed a new method, using GFP as a reporter system to quantify the stability of a protein and its ligand-associated stabilization effects that requires neither special equipment nor extensive purification steps. Here, GFP is fused to a protein of interest (POI) through a linker and is used as a reporter system for protein unfolding and aggregation. The three POIs used in this study include the Ter-binding protein Tus, glycerol kinase and chloramphenicol acetyl transferase. The fluorescent fusion protein is subjected to irreversible thermal denaturation leading to formation of aggregates, which are eliminated by a centrifugation step. The residual fluorescence of the soluble fraction can be directly related to the stability of the POI and can be quantitatively monitored using a fluorescence plate reader. The GFP-based stability assay (GFP-Basta) was able to identify stabilizing compounds and afforded a new quantitative method for the screening and ranking of ligands for three different proteins. These applications are particularly useful for drug discovery, directed evolution, structural and functional genomics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c002001jDOI Listing

Publication Analysis

Top Keywords

reporter system
12
protein
8
protein stability
8
drug discovery
8
stabilization effects
8
stability
6
quantitative determination
4
determination protein
4
stability ligand
4
ligand binding
4

Similar Publications

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Loeys-Dietz syndrome (LDS) is a connective tissue disorder representing a wide spectrum of phenotypes, ranging from isolated thoracic aortic aneurysm or dissection to a more severe syndromic presentation with multisystemic involvement. Significant clinical variability has been noted for both related and unrelated individuals with the same pathogenic variant. We report a family of five affected individuals with notable phenotypic variability who appear to have two distinct molecular causes of LDS, one attributable to a missense variant in and the other an intronic variant 6 bp upstream from a splice junction in .

View Article and Find Full Text PDF

Background: The proliferation capacity of adult cardiomyocytes is very limited in the normal adult mammalian heart. Previous studies implied that cardiomyocyte proliferation increases after injury stimulation, but the result is controversial partly due to different methodologies. We aim to evaluate whether myocardial infarction (MI) stimulates cardiomyocyte proliferation in adult mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!