In honeybee colonies, food collection is performed by a group of mostly sterile females called workers. After an initial nest phase, workers begin foraging for nectar and pollen, but tend to bias their collection towards one or the other. The foraging choice of honeybees is influenced by vitellogenin (vg), an egg-yolk precursor protein that is expressed although workers typically do not lay eggs. The forager reproductive ground plan hypothesis (RGPH) proposes an evolutionary path in which the behavioural bias toward collecting nectar or pollen on foraging trips is influenced by variation in reproductive physiology, such as hormone levels and vg gene expression. Recently, the connections between vg and foraging behaviour were challenged by Oldroyd and Beekman (2008), who concluded from their study that the ovary, and especially vg, played no role in foraging behaviour of bees. We address their challenge directly by manipulating vg expression by RNA interference- (RNAi) mediated gene knockdown in two honeybee genotypes with different foraging behaviour and reproductive physiology. We show that the effect of vg on the food-loading decisions of the workers occurs only in the genotype where timing of foraging onset (by age) is also sensitive to vg levels. In the second genotype, changing vg levels do not affect foraging onset or bias. The effect of vg on workers' age at foraging onset is explained by the well-supported double repressor hypothesis (DHR), which describes a mutually inhibitory relationship between vg and juvenile hormone (JH) - an endocrine factor that influences development, reproduction, and behaviour in many insects. These results support the RGPH and demonstrate how it intersects with an established mechanism of honeybee behavioural control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863014PMC
http://dx.doi.org/10.1016/j.anbehav.2010.02.009DOI Listing

Publication Analysis

Top Keywords

foraging behaviour
12
foraging onset
12
foraging
10
nectar pollen
8
reproductive physiology
8
behaviour
5
genotype regulation
4
regulation behaviour
4
behaviour vitellogenin
4
vitellogenin supports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!