A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly. | LitMetric

Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly.

Biochem Cell Biol

Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada.

Published: April 2010

Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o09-168DOI Listing

Publication Analysis

Top Keywords

apolipoprotein b100
8
apob
8
regulation apob
8
b100 biogenesis
4
biogenesis complex
4
complex array
4
array intracellular
4
intracellular mechanisms
4
mechanisms regulating
4
regulating folding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!