Polymorphic configurations of the coagulation factor VII gene (F7) are associated with plasma levels of FVII antigen (FVII:Ag) and FVII coagulant activity (FVII:C). Our aim was to determine whether F7 polymorphisms influence risk of ischemic stroke in young adults. One hundred and fifty survivors of ischemic stroke before the age of 45 and an equal number of age and sex-matched controls were genotyped for five F7 polymorphisms: the -A670C transversion, -323 decanucleotide insertion (P + 10), the number (which varies between five and eight) of a 37 base pair repeat polymorphisms in intron 7 (IVS7), amino acid substitution R353Q, and +154AA insertion. 353Q, P + 10 and +154AA were demonstrated to associate with significantly decreased plasma FVII:Ag, whereas -670C and IVS7 seven or higher were associated with a tendency towards increased plasma FVII:Ag. The former three polymorphisms were significantly more common in control individuals than in patients, whereas the latter two were significantly more common in patients than in control individuals. The multiple logistic regression analysis revealed that two F7 polymorphisms, -670C and IVS7 seven or higher, are independent risk factors for ischemic stroke in young adult patients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MBC.0b013e3283389513DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
16
stroke young
12
factor vii
8
vii gene
8
young adults
8
plasma fviiag
8
-670c ivs7
8
ivs7 higher
8
control individuals
8
polymorphisms
6

Similar Publications

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.

Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.

Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.

View Article and Find Full Text PDF

Background: Mitral annular calcification (MAC) is a common chronic degenerative process of the mitral valve. Thrombus formation on MAC is a rare complication that likely contributes to the increased risk of thromboembolic events. Outcomes and management strategies for this condition are unknown.

View Article and Find Full Text PDF

Stroke remains a critical global health challenge, with ischemic stroke comprising most cases and necessitating rapid, effective treatment to improve patient outcomes. This review explores the integration of artificial intelligence (AI) and machine learning into medical devices for stroke triaging, highlighting their impact on reducing notification times, latency in care, and health disparities. By analyzing Food and Drug Administration-approved AI-enabled devices under the "Radiological computer-assisted triage and notification software" regulation category, we assess their sensitivity, specificity, and time-to-notification as the measure of their overall effectiveness in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!