Background: Diabetic patients are frequently afflicted with medial artery calcification, a predictor of cardiovascular mortality. Diabetes induced the expression of osteopontin in arterial vasculature, which is an indicator of disease progression in artery calcification and vascular stiffness. Signal transduction and strategies that suppress high glucose-induced osteopontin expression in arterial vascular smooth muscle cells is investigated.
Methods And Results: The incubation of rat aortic smooth muscle cells under high glucose concentration increased osteopontin protein secretion and mRNA expression. Treatment with dipyridamole decreased high glucose-induced osteopontin expression and secretion. Dipyridamole decreased glucose-induced osteopontin through inhibition of phosphodiesterase, thereby increasing intracellular levels of adenosine-3',5'-cyclic monophosphate (cAMP) and guanosine-3',5'-cyclic monophosphate (cGMP), and increased thioredoxin expression to inhibit the reactive oxygen species (ROS) system. Induction of osteopontin was reversed when cells were pretreated with N-[2-bromocinnamyl(amino)ethyl]-5-isoquinolinesulfonamide (H89, cAMP-dependent protein kinase inhibitor), KT5823 (cGMP-dependent protein kinase inhibitor), or dinitrochlorobenzene (thioredoxin reductase inhibitor). The antioxidant, N-acetyl-L-cysteine, suppressed glucose-induced osteopontin expression by decreasing ROS concentration. Both H89 and KT5823 downregulated thioredoxin expression.
Conclusions: These results suggest a novel effect for dipyridamole to suppress high glucose-induced osteopontin protein secretion and mRNA expression. Dipyridamole has antioxidant properties and a phosphodiesterase inhibitor activity, which might be useful to ameliorate diabetic vasculopathy and its cardiovascular complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1253/circj.cj-09-0561 | DOI Listing |
Pharmacol Res
December 2022
Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Division of Integrative Renal Replacement Therapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
Background And Aims: Nephrolithiasis is a common renal disease with no effective medication. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, an anti-diabetic agent, have diuretic and anti-inflammatory properties and could prevent nephrolithiasis. Here, we investigated the potential of SGLT2 inhibition against nephrolithiasis using large-scale epidemiological data, animal models, and cell culture experiments.
View Article and Find Full Text PDFMol Med Rep
September 2022
Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China.
Osteoporosis (OP) is a bone metabolic disease, in which low bone mass and the microarchitectural deterioration of bone tissue contribute to the fragility of bones and increase the risk of fracture. The aim of the present study was to determine the role of microRNA (miR)‑98‑5p in high glucose (HG)‑induced preosteoblasts. HG was used to induce preosteoblasts treated in a differentiation medium to establish an OP model.
View Article and Find Full Text PDFInt J Mol Sci
April 2021
Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan.
Upstream stimulatory factor 1 (USF1) is a transcription factor that is increased in high-glucose conditions and activates the transforming growth factor (TGF)-β1 promoter. We examined the effects of synthetic pyrrole-imidazole (PI) polyamides in preventing USF1 binding on the TGF-β1 promoter in Wistar rats in which diabetic nephropathy was established by intravenous administration of streptozotocin (STZ). High glucose induced nuclear localization of USF1 in cultured mesangial cells (MCs).
View Article and Find Full Text PDFFront Pharmacol
March 2021
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
The overall objective of this study was to investigate the effects of catalpol on bone remodeling of diabetic osteoporosis by regulating osteoblast differentiation and migration. Using a murine model of diabetic osteoporosis, to detect the protective effects of catalpol on bone loss, architectural deterioration of trabecular bone and bone metabolism biomarkers were tested. A model of MC3T3-E1 cells was established by treatment with high glucose; the regulatory role of catalpol in the differentiation and migration was tested by Western blot, ALP staining, and Alizarin Red staining.
View Article and Find Full Text PDFJ Cell Mol Med
June 2020
Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Biopathology and Therapy of Inflammation, Bucharest, Romania.
Calcific aortic valve disease (CAVD)-the most common valvular heart disease-is accelerated in diabetes and has no pharmacotherapy. Although it is known that early CAVD is associated with inflammation and osteogenesis, the molecular mechanisms involved in diabetes-associated CAVD still need to be uncovered. In this context, we have developed a 3D construct based on gelatin populated with human valvular endothelial cells (VEC) and valvular interstitial cells (VIC) and evaluated the effect of high glucose (HG) concentration on osteogenic molecules expression and on calcification mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!