We report a smart mesoporous silica nanoparticle (MSN) with a pore surface designed to undergo charge conversion in intracellular endosomal condition. The surface of mesopores in the silica nanoparticles was engineered to have pH-hydrolyzable citraconic amide. Solid-state nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) analyses confirmed the successful modification of the pore surfaces. MSNs (MSN-Cit) with citraconic amide functionality on the pore surfaces exhibited a negative zeta potential (-10 mV) at pH 7.4 because of the presence of carboxylate end groups. At cellular endosomal pH (approximately 5.0), MSN-Cit have a positive zeta potential (16 mV) indicating the dramatic charge conversion from negative to positive by hydrolysis of surface citraconic amide. Cytochrome c (Cyt c) of positive charges could be incorporated into the pores of MSN-Cit by electrostatic interactions. The release of Cyt c can be controlled by adjusting the pH of the release media. At pH 7.4, the Cyt c release was retarded, whereas, at pH 5.0, MSN-Cit facilitated the release of Cyt c. The released Cyt c maintained the enzymatic activity of native Cyt c. Hemolytic activity of MSN-Cit over red blood cells (RBCs) was more pronounced at pH 5.0 than at pH 7.0, indicating the capability of intracellular endosomal escape of MSN carriers. Confocal laser scanning microscopy (CLSM) studies showed that MSN-Cit effectively released Cyt c in endosomal compartments after uptake by cancer cells. The MSN developed in this work may serve as efficient intracellular carriers of many cell-impermeable therapeutic proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/21/22/225101 | DOI Listing |
J Am Chem Soc
December 2023
Max Planck Institute for Polymer Research, Mainz 55128, Germany.
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions.
View Article and Find Full Text PDFPharmaceutics
January 2023
College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
Biomater Sci
January 2023
School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
(PA) biofilms cause many persistent chronic infections in humans, especially in cystic fibrosis (CF) patients. The biofilms form a strong barrier which may inhibit antimicrobial agents from penetrating the biofilms and killing PA bacteria that reside deep within the biofilms. Concomitant therapies based on tobramycin (TOB) and azithromycin (AZM) have demonstrated beneficial effects in CF patients with chronic PA infections.
View Article and Find Full Text PDFBiomacromolecules
December 2022
School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia.
We introduce a pH-sensitive amide bond, inspired by citraconic anhydride, for the reversible conjugation of polymers to the lysine residues of proteins and antibodies. The pH sensitivity arises from a conformation lock at the end of the polymer, which we introduce by means of a Diels-Alder reaction, that positions a carboxylic acid close to the amide after conjugation occurs. The amide is stable over weeks at pH 7.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2022
The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China. Electronic address:
To treat acute kidney injury with high efficiency and low toxicity, a novel nanoplatform was developed to remove excess reactive oxygen species (ROS). Lutein (LU) and celastrol (Cel) were loaded into low molecular weight chitosan (CS) to prepare Cel@LU-CA-CS nanomicelles. Renal tubular epithelial (HK-2) cell uptake experiments showed that the drugs could be internalized in renal tubular via the megalin receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!