Organization of DNA replication.

Cold Spring Harb Perspect Biol

Department of Biology, Technische Universität Darmstadt, Germany.

Published: April 2010

The discovery of the DNA double helix structure half a century ago immediately suggested a mechanism for its duplication by semi-conservative copying of the nucleotide sequence into two DNA daughter strands. Shortly after, a second fundamental step toward the elucidation of the mechanism of DNA replication was taken with the isolation of the first enzyme able to polymerize DNA from a template. In the subsequent years, the basic mechanism of DNA replication and its enzymatic machinery components were elucidated, mostly through genetic approaches and in vitro biochemistry. Most recently, the spatial and temporal organization of the DNA replication process in vivo within the context of chromatin and inside the intact cell are finally beginning to be elucidated. On the one hand, recent advances in genome-wide high throughput techniques are providing a new wave of information on the progression of genome replication at high spatial resolution. On the other hand, novel super-resolution microscopy techniques are just starting to give us the first glimpses of how DNA replication is organized within the context of single intact cells with high spatial resolution. The integration of these data with time lapse microscopy analysis will give us the ability to film and dissect the replication of the genome in situ and in real time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845211PMC
http://dx.doi.org/10.1101/cshperspect.a000737DOI Listing

Publication Analysis

Top Keywords

dna replication
20
organization dna
8
mechanism dna
8
high spatial
8
spatial resolution
8
replication
7
dna
7
replication discovery
4
discovery dna
4
dna double
4

Similar Publications

Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction.

Fish Shellfish Immunol

January 2025

The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China. Electronic address:

Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited.

View Article and Find Full Text PDF

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis.

View Article and Find Full Text PDF

Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!