D-Aspartate (D-Asp) can substitute for L-glutamate (L-Glu) at excitatory Glu receptors, and occurs as free D-Asp in the mammalian brain. D-Asp electrophysiological responses were studied as a potential correlate of aging in the California sea hare, Aplysia californica. Whole cell voltage- and current clamp measurements were made from primary neuron cultures of the pleural ganglion (PVC) and buccal ganglion S cluster (BSC) in 3 egg cohorts at sexual maturity and senescence. D-Asp activated an inward current at the hyperpolarized voltage of -70 mV, where molluscan NMDA receptors open free of constitutive block by Mg(2+). Half of the cells responded to both D-Asp and L-Glu while the remainder responded only to D-Asp or L-Glu, suggesting that D-Asp activated non-Glu channels in a subpopulation of these cells. The frequency of D-Asp-induced currents and their density were significantly decreased in senescent PVC cells but not in senescent BSC cells. These changes in sensory neurons of the tail predict functional deficits that may contribute to an overall decline in reflexive movement in aged Aplysia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062251PMC
http://dx.doi.org/10.1016/j.brainres.2010.05.001DOI Listing

Publication Analysis

Top Keywords

d-asp activated
8
responded d-asp
8
d-asp l-glu
8
d-asp
7
changes d-aspartate
4
d-aspartate ion
4
ion currents
4
currents aplysia
4
aplysia nervous
4
nervous system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!