The mechanism by which host cells recognize Cordyceps sinensis, a Chinese herbal medicine that is known to exhibit immunomodulating activity, remains poorly understood. In this study, we investigated whether the DNA of this fungus could activate mouse bone marrow-derived dendritic cells (BM-DCs). Upon stimulation with C. sinensis DNA, BM-DCs released IL-12p40 and TNF-alpha and expressed CD40. Cytokine production and CD40 expression were attenuated by chloroquin and bafilomycin A. Activation of BM-DCs by C. sinensis DNA was almost completely abrogated in TLR9KO mice. According to a luciferase reporter assay, C. sinensis DNA activated NF-kappaB in HEK293T cells transfected with the TLR9 gene. Finally, a confocal microscopic analysis showed that C. sinensis DNA was co-localized with CpG-ODN and partly with TLR9 and LAMP-1, a late endosomal marker, in BM-DCs. Our results demonstrated that C. sinensis DNA caused activation of BM-DCs in a TLR9-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellimm.2010.04.006DOI Listing

Publication Analysis

Top Keywords

sinensis dna
20
dendritic cells
8
cordyceps sinensis
8
activation bm-dcs
8
sinensis
7
dna
6
bm-dcs
5
activation myeloid
4
myeloid dendritic
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!