The role of PARP activation in glutamate-induced necroptosis in HT-22 cells.

Brain Res

Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou City, Jiangsu Province 215123, PR China.

Published: July 2010

Oxidative cell death contributes to neuronal cell death in many neurological diseases such as stroke, brain trauma, and Alzheimer's disease. In this study, we explored the involvement of poly(ADP-ribose)-polymerase (PARP) in oxidative stress-induced necroptosis. We showed that PJ34, a potent and specific inhibitor of PARP, can completely inhibit glutamate-induced necroptosis in HT-22 cells. This protective effect was still observed 8h after glutamate exposure followed by PJ34 treatment. These results suggest that PARP activation plays a critical role in glutamate-induced necroptosis. We also examined the interaction between PARP and a necroptosis inhibitor called necrostatin-1 (Nec-1). Previously, we showed that Nec-1 protects against glutamate-induced oxytosis by inhibiting the translocation of cellular apoptosis-inducing factor (AIF), a downstream target of PARP-1 activation. In this study, Nec-1 reduced PARP activity but had no effect on the expression of PARP-1 in cells treated with glutamate. Nec-1 also did not protect against cell death mediated by the PARP activator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), although PJ34 did protect against MNNG-mediated cell death. These findings suggest that Nec-1 is not a direct PARP inhibitor and that its signaling target is located upstream of PARP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2010.04.080DOI Listing

Publication Analysis

Top Keywords

cell death
16
glutamate-induced necroptosis
12
parp activation
8
necroptosis ht-22
8
ht-22 cells
8
parp
8
necroptosis
5
nec-1
5
role parp
4
glutamate-induced
4

Similar Publications

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy.

Extracell Vesicles Circ Nucl Acids

November 2024

State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.

The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2.

View Article and Find Full Text PDF

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!