For many years the simple view was held that contractile force in smooth muscle was proportional to cytosolic Ca2+ concentrations ([Ca2+]i). With the discovery that phosphorylation of myosin light chain by Ca2+/calmodulin-dependent myosin light chain kinase initiated contraction, regulation of the contractile elements developed more complex properties. Molecular and biochemical investigations have identified important domains of myosin light chain kinase: light chain binding sites, catalytic core, pseudosubstrate prototope, and calmodulin-binding domain. New protein phosphatase inhibitors such as okadaic acid and calyculin A should help in the identification of the physiologically important phosphatase and potential modes of regulation. The proposal of an attached, dephosphorylated myosin cross bridge (latch bridge) that can maintain force has evoked considerable controversy about the detailed functions of the myosin phosphorylation system. The latch bridge has been defined by a model based on physiological properties but has not been identified biochemically. Thin-filament proteins have been proposed as secondary sites of regulation of contractile elements, but additional studies are needed to establish physiological roles. Changes in the Ca2+ sensitivity of smooth muscle contractile elements with different modes of cellular stimulation may be related to inactivation of myosin light chain kinase or activation of protein phosphatase activities. Thus, contractile elements in smooth muscle cells are not dependent solely on [Ca2+]i but use additional regulatory mechanisms. The immediate challenge is to define their relative importance and to describe molecular-biochemical properties that provide insights into proposed physiological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836766PMC
http://dx.doi.org/10.1161/01.hyp.17.6.723DOI Listing

Publication Analysis

Top Keywords

contractile elements
20
light chain
20
smooth muscle
16
myosin light
16
chain kinase
12
muscle contractile
8
regulation contractile
8
protein phosphatase
8
latch bridge
8
contractile
6

Similar Publications

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!