We studied the kinetics of adsorption of alexa-labeled Bt toxin Cry1Aa, in monomer and oligomer states, on muscovite mica, acid-treated hydrophilic glass, and hydrophobized glass, in the configuration of laminar flow of solution in a slit. Normal confocal fluorescence through the liquid volume allows the visualization of the concentration in solution over the time of adsorption, in addition to the signal due to the adsorbed molecules at the interface. The solution signal is used as calibration for estimation of interfacial concentration. We found low adsorption of the monomer compared to oligomers on the three types of surface. The kinetic adsorption barrier for oligomers increases in the order hydrophobized glass, muscovite mica, acid-treated hydrophilic glass. This suggests enhanced immobilization in soil if toxin is under oligomer state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm100313nDOI Listing

Publication Analysis

Top Keywords

hydrophobized glass
12
adsorption alexa-labeled
8
alexa-labeled toxin
8
glass hydrophobized
8
confocal fluorescence
8
muscovite mica
8
mica acid-treated
8
acid-treated hydrophilic
8
hydrophilic glass
8
glass
6

Similar Publications

Molecular engineering of supramolecular polymer adhesive with confined water and a single crown ether.

Chem Sci

December 2024

Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.

View Article and Find Full Text PDF

Spin Glass Transition of Magnetic Ionic Liquids Induced by Self-Assembly.

Langmuir

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.

View Article and Find Full Text PDF

An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing.

Small

January 2025

State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.

In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.

View Article and Find Full Text PDF

Improving small-scale cultivation of Spodoptera frugiperda 9 cells by silanizing glassware.

Sci Rep

December 2024

Department of Medical Engineering and Biotechnology, Ernst-Abbe-Hochschule, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.

Cultivating insect cells in glass vessels can be challenging. Due to uncontrolled cell adhesion and associated cell loss as well as clumping, the replication of experiments is put at risk. A cost-effective solution to improve and stabilize cultivation may be to silanize glass vessels, making them more hydrophobic and chemically inert.

View Article and Find Full Text PDF

Hypothesis: The presence of hydrodynamic slip of water on smooth hydrophobic surfaces has been debated intensely over the last decades. In recent experiments, the stronger bounce of free-rising bubbles from smooth hydrophobic surfaces compared to smooth hydrophilic surfaces was interpreted as evidence for a significant water slip on smooth hydrophobic surfaces.

Experiments: To examine the possible water-slip effect, we conduct well-controlled experiments comparing the bouncing dynamics of millimeter-sized free-rising bubbles from smooth hydrophobic and hydrophilic surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!