Pulp and paper mill effluent is highly polluting and is a subject of great environmental concern. In the present research we studied the removal of chemical oxygen demand (COD) and colour from paper mill effluent, using the coagulation process. A batch coagulation study was conducted using various coagulants such as aluminium chloride (AlCl3), polyaluminium chloride (PAC) and copper sulphate (CuSO4 x 5H20). The initial pH of the effluent had a tremendous effect on the COD and colour removal. The PAC reduced COD by 83% and reduced colour by 92% at an optimum pH of 5.0 and a coagulant dose of 8 mL L(-1). With AlCl3, at an optimum pH of 4.0 and a coagulant dose of 5 g L(-1), 72% COD removal and 84% colour removal were observed. At an optimum pH of 6.0 and a mass loading of 5 g L(-1), 76% COD reduction and 78% colour reduction were obtained with copper sulphate. It was also observed that, after addition of coagulant, the pH of the effluent decreased. The decrease in the pH was highest with AlCl3, followed by PAC and then CuSO4 x 5H20.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330903486665DOI Listing

Publication Analysis

Top Keywords

mill effluent
12
effluent coagulation
8
paper mill
8
cod colour
8
copper sulphate
8
cuso4 5h20
8
colour removal
8
optimum coagulant
8
coagulant dose
8
dose l-1
8

Similar Publications

Article Synopsis
  • Understanding the chronic toxicity of Palm Oil Mill Effluent (POME) on zebrafish highlights its negative effects on growth, respiratory health, and skin appearance.
  • Exposure to varying concentrations of POME over 28 days demonstrated significant reductions in growth metrics and oxygen consumption in zebrafish.
  • Findings indicate that POME contamination leads to observable skin discoloration, emphasizing the need for improved management and regulation in the palm oil industry.
View Article and Find Full Text PDF

In this study, the phytoremediation potential of Taro (Colocasia esculenta L. Schott) plant was examined, utilizing horizontal subsurface flow constructed wetlands with and without an electric current supply for the purpose of removing pollutants from paper mill effluent. For this, different wetlands were set up with varying concentrations of effluent: CW (Control), CW1 (25%), CW2 (50%), CW3 (75%), CW4 (100%).

View Article and Find Full Text PDF

Olive mill wastewater treatment using coagulation/flocculation and filtration processes.

Heliyon

November 2024

Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.

Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds.

View Article and Find Full Text PDF

This study investigated the effects of various pretreatment methods on the anaerobic digestibility of oil palm empty fruit bunches (EFB) for methane production. Pretreatment methods included weak alkaline (2 % Ca(OH)), weak acid (2 % acetic acid), acidified palm oil mill effluent (POME), biogas effluent, hydrothermal (180 °C, 190 °C, and 200 °C), and microwave pretreatments. All pretreatment methods enhanced methane yield compared to untreated EFB (189.

View Article and Find Full Text PDF

Dual function of sea grapes (Caulerpa racemosa) as phytoremediator for palm oil mill effluent and as ornamental fish feed formulation.

Chemosphere

November 2024

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.

Phytoremediation is a promising technology for treating Palm Oil Mill Effluent (POME). Moreover, phytoremediators have the potential for various aplication, including as feedstock. Hence, this study aims to elucidate the ability of sea grapes (Caulerpa racemosa) in remediating POME and evaluate their suitability as ornamental fish feed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!