The cell parameters of Ba3[Cr(CN)5NO]2.8H2O were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail methods with the FULLPROF program. An orthorhombic cell was determined with cell parameters a = 15.0324(2) A, b = 12.9542(9) A, and c = 7.5094(5) A. Two possible space groups are consistent with the systematic absences: Pmcb (#55) and P2cb (#32). Infrared spectra are reported for the polycrystalline compound, isotopically normal and partially deuterated, at temperatures ranging between ca. 80 K and 293 K together with the room temperature Raman spectrum. The assignment of the observed bands was accomplished assuming the existence of one type of pentacyanonitrosylchromate ion in the asymmetric unit, as suggested by the single band found in the NO stretching region of the deuterated anion and in the anhydrous compound. TGA-DTA data are also reported and discussed. The assignments are supported by DFT calculations of the normal modes of vibration of the [Cr(CN)5NO](3-) structure, optimized at the same level of theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2010.03.034 | DOI Listing |
PLoS One
January 2025
College of Physics and Electronic Engineering, Hainan Normal University, HaiKou, China.
We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.
View Article and Find Full Text PDFSmall
January 2025
College of Energy, Xiamen University, Xiamen, Fujian, 361102, China.
Silicon is widely recognized as a promising anode material for all-solid-state batteries (ASSBs) due to exceptional specific capacity, abundant availability, and environmental sustainability. However, the considerable volume expansion and particle fragmentation of Si during cycling lead to significant performance degradation, limiting its practical application. Herein, the development of a pre-lithiated Si-based composite anode (c-LiSi) is presented, designed to address the key challenges faced by Si-based anodes, namely severe volume changes and low electrochemical stability.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.
View Article and Find Full Text PDFDalton Trans
January 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.
In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!