Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus.

Phys Chem Chem Phys

Department of Physical Chemistry II, Technische Universität Dortmund, 44227 Dortmund, Otto-Hahn-Strasse 6, Germany.

Published: March 2010

This paper describes the mechanical properties of thin-walled, liquid-filled calcium alginate capsules by measuring the deformation of these particles in a spinning drop apparatus. By variation of the guluronic acid content of the alginate, the polymerization time and the calcium and alginate concentration we systematically studied the elastic properties of these capsules. In a series of experiments we observed for the first time new types of irreversibly deformed capsules, which can be described by plastic deformation. For comparison purposes, we also investigated liquid-filled calcium alginate particles in squeezing capsule experiments. The qualitative and quantitative results of both experiments in terms of the deformation properties and the surface Young moduli were in good agreement. Furthermore we also investigated liquid-filled calcium alginate particles by NMR microscopy to characterize the capsules in view of their membrane thickness. These results, in combination with the spinning capsule experiments allowed us to measure the kinetics of surface gelation and the mechanism of membrane growing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b921116kDOI Listing

Publication Analysis

Top Keywords

calcium alginate
20
liquid-filled calcium
16
alginate capsules
8
spinning drop
8
drop apparatus
8
investigated liquid-filled
8
alginate particles
8
capsule experiments
8
alginate
6
calcium
5

Similar Publications

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Purpose: Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.

View Article and Find Full Text PDF

Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!