A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed. | LitMetric

QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed.

Phys Chem Chem Phys

Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia.

Published: March 2010

The far-red fluorescent protein HcRed was investigated using molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) calculations. Three models of HcRed (anionic chromophore) were considered, differing in the protonation states of nearby Glu residues (A: Glu214 and Glu146 both protonated; B: Glu214 protonated and Glu146 deprotonated; C: Glu214 and Glu146 both deprotonated). SCC-DFTB/MM MD simulations of model B yield good agreement with the available crystallographic data at ambient pH. Bond lengths in the QM region are well reproduced, with a root mean square (rms) deviation between experimental and average MD data of 0.079 A; the chromophore is almost co-planar, which is consistent with experimental observation; and the five hydrogen bonds involving the chromophore are conserved. QM/MM geometry optimizations were performed on representative snapshot structures from the MD simulations for each model. They confirm the structural features observed in the MD simulations. According to the DFT(B3LYP)/MM results, the cis-conformation of the chromophore is more stable than the trans-form by 9.1-12.9 kcal mol(-1) in model B, and by 12.4-19.9 kcal mol(-1) in model C, consistent with the experimental preference for the cis-isomer. However, in model A when both Glu214 and Glu146 are protonated, the stability is inverted with the trans-form being favored. The different protonation states of the titratable active-site residues Glu214 and Glu146 thus critically influence the manner in which the relative stability and degree of planarity of the cis- and trans-conformers vary with pH. Coupled with the known correlation of chromophore conformation with fluorescence efficiency, this work provides a detailed structural basis for the observed phenomenon that red fluorescent proteins such as HcRed, mKate and Rtms5 show bright fluorescence at high pH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b918523bDOI Listing

Publication Analysis

Top Keywords

glu214 glu146
16
far-red fluorescent
8
fluorescent protein
8
protein hcred
8
protonation states
8
residues glu214
8
glu146 protonated
8
glu146 deprotonated
8
simulations model
8
consistent experimental
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!