An optical sensor concept utilizing the sensing layer as the light propagating layer and a new method to couple light into a planar waveguide is presented. The concept enables simple manufacturing by coating or printing techniques and the integration of organic (plastic) opto-electronic components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898648 | PMC |
http://dx.doi.org/10.1039/b904536h | DOI Listing |
MethodsX
December 2024
Department of Electrical Engineering, College of Engineering Al-Hussein Bin Talal, University, Ma'an 71111, Jordan.
Coplanar waveguide (CPW) transmission lines are valued for their planar design, low radiation, and minimized signal loss, but controlling their characteristic impedance remains a challenge. This study employs the Taguchi method, a statistical approach, to optimize the characteristic impedance by adjusting eight control factors: track width, track thickness, gap width, dielectric height, backplane thickness, conductor material conductivity, dielectric conductivity, and operational frequency. The analysis evaluates these factors across three levels to find optimal conditions, with dielectric height and track width identified as most influential.
View Article and Find Full Text PDFAppl Phys Lett
January 2024
Communications Technology Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France.
Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.
View Article and Find Full Text PDFGeSn alloy has emerged as an attractive active material for Si-based mid-infrared (MIR) lasers due to its direct bandgap nature at higher Sn concentrations. Here, we report on an optically-pumped GeSn MIR lasers based on planar slab waveguide with a top Si ridge structure. The inclusion of 10% Sn transforms the GeSn active layer into a direct bandgap material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!