The plant-specific transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) or the maize ortholog VIVIPAROUS1 (VP1) is known to regulate seed maturation and germination in concert with the phytohormone abscisic acid (ABA) but is also evolutionarily conserved among land plants including non-seed plants. An ABI3/VP1 ortholog (PpABI3A) from the moss Physcomitrella patens can activate ABA-responsive gene promoters in the moss and angiosperms; however, it failed to fully complement the phenotypes of the Arabidopsis abi3-6 mutant, suggesting that some aspects of ABI3/VP1 functions have diverged during the evolution of land plants. To gain insights into the evolution of ABI3/VP1 function, we performed a comparative analysis of the regulatory elements required for ABI3 activation in Physcomitrella using a wheat Em gene promoter, which is induced by ABA and ABI3/VP1 both in Physcomitrella and in angiosperms. Elimination of either the ACGT core motif in the ABA response element (ABRE) or the RY element, to which ABI3/VP1 binds directly, resulted in a drastic reduction of the ABA response in Physcomitrella. Arabidopsis ABI3 could effectively activate the Em promoter either in an ABRE- or RY-dependent manner, as observed in angiosperms. On the other hand, PpABI3A failed to activate an Em promoter lacking the RY element but not the ABRE. These results suggest that RY-mediated transcriptional regulation of ABI3/VP1 is evolutionarily conserved between the moss and angiosperms, whereas angiosperm ABI3/VP1 has evolved to activate ABA-inducible promoters via the ABRE sequence independently from the RY element.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115069 | PMC |
http://dx.doi.org/10.4161/psb.5.9.11774 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFNutrients
December 2024
Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!