Objective: To evaluate the effectiveness of long-term angiotensin (Ang) (1-7) treatment to inhibit the progression of atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice.
Methods And Results: Ang (1-7) is a heptapeptide fragment that has been proposed to counterregulate the Ang II proatherogenic effects. The effect of long-term 4-week Ang (1-7) treatment on both inhibition of atherosclerotic lesion development and improvement of endothelial function was examined in apolipoprotein E(-/-) mice that had been fed an atherogenic high-fat (21%) diet for 16 weeks. Chronic Ang (1-7) treatment significantly improved endothelial function, an effect reversed with either angiotensin type 2 (AT(2)) or Mas receptor blockade. In these vessels, Ang (1-7) treatment significantly decreased superoxide production and increased endothelial nitric oxide synthase immunoreactivity when compared with vehicle treatment. These effects were blocked by both AT(2) and Mas receptor antagonists. Lesion development, assessed as both fatty deposits (oil red O) and intima to media ratio, was also significantly decreased with Ang (1-7) treatment compared with respective controls. Cotreatment with either AT(2) or Mas receptor antagonists reversed Ang (1-7)-mediated reduction in lesion development.
Conclusions: Long-term Ang (1-7) treatment caused both vasoprotection, via improvement in endothelial function, and atheroprotection, with a reduction in lesion progression in a model of atherosclerosis. These effects appear to be mediated by the restoration of nitric oxide bioavailability and involve a complex interaction of both Mas and AT(2) receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.110.204453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!