Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Analysis of catecholamines (epinephrine, norepinephrine and dopamine) in plasma and urine is used for diagnosis and treatment of catecholamine-producing tumors. Current analytical techniques for catecholamine quantification are laborious, time-consuming and technically demanding. Our aim was to develop an automated on-line solid phase extraction method coupled to high performance liquid chromatography-tandem mass spectrometry (XLC-MS/MS) for the quantification of free catecholamines in urine. Five microlitre urine equivalent was pre-purified by automated on-line solid phase extraction, using phenylboronic acid complexation. Reversed phase (pentafluorophenylpropyl column) chromatography was applied. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Urinary reference intervals were set in 24-h urine collections of 120 healthy subjects. XLC-MS/MS was compared with liquid chromatography with electrochemical detection (HPLC-ECD). Total run-time was 14 min. Intra- and inter-assay analytical variations were <10%. Linearity was excellent (R2>0.99). Quantification limits were 1.47 nmol/L, 15.8 nmol/L and 11.7 nmol/L for epinephrine, norepinephrine and dopamine, respectively. XLC-MS/MS correlated well with HPLC-ECD (correlation coefficient >0.98). Reference intervals were 1-10 micromol/mol, 10-50 micromol/mol and 60-225 micromol/mol creatinine for epinephrine, norepinephrine and dopamine, respectively. Advantages of the XLC-MS/MS catecholamine method include its high analytical performance by selective PBA affinity and high specificity and sensitivity by unique MS/MS fragmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2010.03.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!