Objectives: To report trihalomethane (THM) and haloacetic acid (HAA) concentrations in drinking water, assess variations in these concentrations depending on source and over time, and estimate individual intake during pregnancy.

Methods: Water taken from 33 representative points of the water supply network of the 25 municipalities in the study area was analyzed from 2006-2008. Water drinking habits were recorded using a questionnaire.

Results: Mean total THM concentrations were 16.9 μg/L (standard deviation, 7.9), while the mean value for the sum of concentrations of five HAA (monochloroacetic, dichloroacetic, tricholoroacetic, monobromoacetic, and dicromoacetic acids) was 10.9 μg/L (standard deviation, 4.9). Concentrations were lower in spring waters, which were only chlorinated, compared with dam waters, which were subject to a complete purification treatment: 8.8 μg/L vs 19.1 μg/L (p<0.01) and 8.2 μg/L vs 11.7 μg/L (p<0.01). Concentrations significantly increased with the number of deposits in the network and with their rechlorination and were higher in the summer and fall. Mean intakes of total THM and of the five HAA were lower in women supplied with spring water. Intakes differed depending on supply reservoir.

Conclusions: Disinfection by-products in water are affected by water source, supply network structure, and annual season. The mean intake of these products varies depending on the source of drinking water. Mean intakes of all products were much lower than values recommended by the World Health Organization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaceta.2010.03.003DOI Listing

Publication Analysis

Top Keywords

haloacetic acid
8
concentrations drinking
8
drinking water
8
μg/l standard
8
standard deviation
8
concentrations
6
water
5
[trihalomethane haloacetic
4
acid concentrations
4
water estimated
4

Similar Publications

Predicting few disinfection byproducts in the water distribution systems using machine learning models.

Environ Sci Pollut Res Int

January 2025

Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.

View Article and Find Full Text PDF

Modeling dissolved organic carbon export from water supply catchments in the northeastern United States.

Sci Total Environ

January 2025

695 Park Avenue, The Institute for Sustainable Cities, Hunter College of the City University of New York, New York, NY 10065, United States of America. Electronic address:

Natural organic matter (NOM) in rivers is an important energy source to sustain aquatic ecosystem health. However, in surface water supply systems where chlorination is often used for disinfection, NOM is also a precursor for the carcinogenic and mutagenic disinfection byproducts such as trihalomethanes and haloacetic acids. Effective management of NOM in rivers to maintain both aquatic ecosystem functions and high-quality water supply requires better understanding of the NOM transport patterns.

View Article and Find Full Text PDF

Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.

View Article and Find Full Text PDF

Objective: This study aims to investigate the correlation between exposure to disinfection byproducts of chlorination and preterm birth (PTB) through evidence-based medicine Meta-analysis and Mendelian randomization (MR) analysis.

Study Design: Meta-analysis was conducted on 17 studies involving 1,251,426 neonates, revealing a higher risk of PTB with exposure to total trihalomethanes (TTHMs) and chloroform. Mendelian randomization (MR) analysis confirmed a causal relationship between chlorides and PTB.

View Article and Find Full Text PDF

Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!