The regulation of angiogenesis by hypoxia is an essential homeostatic mechanism that depends on a precise balance between positive and negative angiogenic regulatory molecules. Proangiogenic factors are well characterized; however, several in vivo and in vitro studies indicate that there are feedback mechanisms in place to inhibit angiogenesis during hypoxia. Understanding the signaling pathways leading to the negative feedback of angiogenesis will undoubtedly provide important tools to develop novel therapeutic strategies not only to enhance the angiogenic response in coronary artery disease but also to hinder deregulated angiogenesis in tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866290 | PMC |
http://dx.doi.org/10.1016/j.tcm.2010.02.006 | DOI Listing |
Bone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Gynecology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, China.
Currently, hormonal therapy for endometriosis faces challenges in achieving a balance between treatment and preserving the chance of pregnancy. Therefore, the development of non-hormonal therapy holds significant clinical importance. Angiogenesis is a hallmark of endometriosis, and anti-angiogenic therapies targeting the hypoxia-inducible factor-1α (HIF-1α) pathway are considered potential approaches for endometriosis.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Centre for Molecular Biophysics, UPR CNRS 4301, Orleans, France.
The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!