Transient oxygen states in catalysis: ammonia oxidation at Ag(111).

Langmuir

Cardiff Institute of Catalysis, School of Chemistry, Cardiff University, Cardiff, CF10 3AT.

Published: November 2010

Although the reactive sticking probability of oxygen at Ag(111) is of the order of 10(-6) at 295 K, ammonia oxidation is a facile process at low temperatures. A combination of quantitative analysis of photoelectron spectra together with high resolution electron energy loss spectroscopy provides kinetic and spectroscopic evidence for an ammonia-dioxygen complex, stable at 100 K, as the key intermediate. The reactive oxygen O(2)(s) is a transient dioxygen precursor of the unreactive peroxo state O(2)(δ-)(a). It is present as a complex when ammonia and dioxygen are coadsorbed at low temperature (100 K) with evidence from both O(1s) and energy loss spectra. Hydroxyl and amide/imide species are formed, followed by dehydroxylation and "oxide" formation at 260 K. This is a further example (zinc was the first) of how an sp-metal, where dioxygen bond cleavage is slow, provides an alternative pathway via a transient dioxygen state to catalytic oxidation through precursor assisted dioxygen bond cleavage. Whether it is a general characteristic of sp-metals remains to be established. Comparisons are made with the homogeneously catalyzed Gif reaction, the selective oxidation of hydrocarbons by dioxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la100953mDOI Listing

Publication Analysis

Top Keywords

ammonia oxidation
8
energy loss
8
transient dioxygen
8
dioxygen bond
8
bond cleavage
8
dioxygen
6
transient oxygen
4
oxygen states
4
states catalysis
4
catalysis ammonia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!