The role of the seam of intersection between the lowest (pi,pi*) and (n,pi*) excited states in the decay of electronically excited singlet thymine has been investigated with ab initio complete active space self-consistent field (CASSCF) calculations and direct dynamics variational multiconfiguration Gaussian (DD-vMCG) quantum dynamics on the full-dimensional CASSCF surface, with 39 degrees of freedom. The seam has a sloped-to-peaked topography, and the dynamics at the different segments of the seam have been studied by varying the initial conditions of the propagation. When the wave packet is directed to the peaked segments, part of it traverses the seam, stays on the (pi,pi*) state and heads towards decay to the ground state. In contrast to this, when the wave packet is driven to sloped seam segments it bounces back to the minimum of the (pi,pi*) state. Significant population transfer to the (n,pi*) state is observed in both cases. The results suggest that a sloped-to-peaked topography can be used to control photochemical reactivity, by driving the wave packet to different regions of the seam where a different outcome of the propagation can be expected.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c001556cDOI Listing

Publication Analysis

Top Keywords

wave packet
12
seam intersection
8
quantum dynamics
8
sloped-to-peaked topography
8
pipi* state
8
seam
7
exploring sloped-to-peaked
4
sloped-to-peaked s2/s1
4
s2/s1 seam
4
intersection thymine
4

Similar Publications

Elastic Wave Packets Crossing a Space-Time Interface.

Phys Rev Lett

December 2024

Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.

The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.

View Article and Find Full Text PDF

Vortex states of photons, electrons, and other particles are freely propagating wave packets with helicoidal wave fronts winding around the axis of a phase vortex. A particle prepared in a vortex state carries a nonzero orbital angular momentum projection on the propagation direction, a quantum number that has never been exploited in experimental particle and nuclear physics. Low-energy vortex photons, electrons, neutrons, and helium atoms have been demonstrated in experiment and found numerous applications, and there exist proposals of boosting them to higher energies.

View Article and Find Full Text PDF

Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates.

Anal Chem

January 2025

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.

View Article and Find Full Text PDF

The space-time wave packet (STWP) is a type of pulsed optical field, exhibiting distinctive characteristics, including the capacity to propagate without diffraction or dispersion and to have arbitrary group velocities. However, the intensity of the STWP is constrained by the low damage threshold of some indispensable optical elements like the spatial light modulator (SLM). While optical parametric amplification (OPA) has been proposed for amplifying STWPs, spatio-temporal (ST) characteristics of amplified STWPs remain significantly unexplored.

View Article and Find Full Text PDF

A transversely isotropic diode-pumped solid-state laser is used to obtain an orthogonally dual-polarization nonplanar circular mode (NCM) under off-axis pumping in the strictly degenerate cavity. Each polarized component of the NCM outside the cavity is revealed to be individually localized on the ray orbits forming a nonplanar surface, in which the transverse patterns display multiple spots well positioned on a circular structure. An analytical representation is established to explore polarization-resolved components of the NCM by utilizing the Gaussian wave packet to directly correlate with geometrical rays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!