One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. The U.S. Government has addressed these threats with a two-pronged strategy of preventing organizations from obtaining weapons of mass destruction and preparing in case an event occurs. The National Institute of Allergy and Infectious Diseases (NIAID) contributes to these preparedness efforts by supporting basic research and development for chemical, biological, radiological, and nuclear countermeasures for civilian use. The Radiation Countermeasures Program at NIAID has established a broad research agenda focused on the development of new medical products to mitigate and treat acute and long-term radiation injury, promote the clearance of internalized radionuclides, and facilitate accurate individual dose and exposure assessment. This paper reviews the recent work and collaborations supported by the Radiation Countermeasures Program.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0b013e3181bbc4df | DOI Listing |
Sensors (Basel)
December 2024
Institute of Smart Systems and Services, Pforzheim University, 75175 Pforzheim, Germany.
Multispectral imaging (MSI) enables non-invasive tissue differentiation based on spectral characteristics and has shown great potential as a tool for surgical guidance. However, adapting MSI to open surgeries is challenging. Systems that rely on light sources present in the operating room experience limitations due to frequent lighting changes, which distort the spectral data and require countermeasures such as disruptive recalibrations.
View Article and Find Full Text PDFNoise Health
January 2025
Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
Exposure to sound energy may be a risk factor or a therapeutic intervention for Alzheimer's disease (AD). On one hand, noise has a harmful effect on people with AD by contributing to hearing loss, sleep disturbance, oxidative stress, inflammation, and excitotoxicity. But on the other hand, clinical trials and nursing home interventions with soundscape augmentation involving natural sounds have shown promising results in alleviating psychophysiological symptoms in people with AD.
View Article and Find Full Text PDFRadiat Res
December 2024
Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
BBT-059 is a long-acting PEGylated interleukin-11 analog that has been shown to have hematopoiesis-promoting and anti-apoptotic attributes, and is being studied as a radiation countermeasure for the hematopoietic acute radiation syndrome (H-ARS). This potential countermeasure has been demonstrated to enhance survival in irradiated mice. To investigate the toxicity and safety profile of this agent, 14 nonhuman primates (NHPs, rhesus macaques) were administered two different doses of BBT-059 subcutaneously 24 h after 4 Gy total-body irradiation and were monitored for the next 60 days postirradiation.
View Article and Find Full Text PDFCell Transplant
January 2025
School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, China.
Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!