The functional coupling of neural circuits between the upper and lower limbs involving rhythmic movements is of interest to both motor control research and rehabilitation science. This coupling can be detected by examining the effect of remote rhythmic limb movement on the modulation of reflex amplitude in stationary limbs. The present study investigated the extent to which rhythmic leg pedaling modulates the amplitude of an early latency (peak 30-70 ms) cutaneous reflex (ELCR) in the upper limb muscles. Thirteen neurologically intact volunteers performed leg pedaling (60 or 90 rpm) while simultaneously contracting their arm muscles isometrically. Control experiments included isolated isometric contractions and discrete movements of the leg. ELCRs were evoked by stimulation of the superficial radial nerve with a train of rectangular pulses (three pulses at 333 Hz, intensity 2.0- to 2.5-fold perceptual threshold). Reflex amplitudes were significantly increased in the flexor carpi radialis and posterior deltoid and significantly decreased in the biceps brachii muscles during leg pedaling compared with that during stationary isometric contraction of the lower leg muscles. This effect was also sensitive to cadence. No significant modulation was seen during the isometric contractions or discrete movements of the leg. Additionally, there was no phase-dependent modulation of the ELCR. These findings suggest that activation of the rhythm generating system of the legs affects the excitability of the early latency cutaneous reflex pathways in the upper limbs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00774.2009DOI Listing

Publication Analysis

Top Keywords

leg pedaling
16
early latency
12
latency cutaneous
8
upper limb
8
limb muscles
8
cutaneous reflex
8
isometric contractions
8
contractions discrete
8
discrete movements
8
movements leg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!