Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2009-1238DOI Listing

Publication Analysis

Top Keywords

lipid partitioning
16
mitochondrial dysfunction
12
reactive oxygen
12
oxygen species
12
lipid
8
cholesterol ceramide
8
species production
8
elevated glucose
8
ins832/13 cells
8
genes suggested
8

Similar Publications

Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films.

Food Res Int

January 2025

Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.

This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e.

View Article and Find Full Text PDF

Biomolecular condensates are a ubiquitous component of cells, known for their ability to selectively partition and compartmentalize biomolecules without the need for a lipid membrane. Nevertheless, condensates have been shown to interact with lipid membranes in diverse biological processes, such as autophagy and T-cell activation. Since many condensates are known to have a net surface charge density and associated electric potential(s), we hypothesized that they can induce a local membrane potential.

View Article and Find Full Text PDF
Article Synopsis
  • Bile salts act as biosurfactants in the gastrointestinal tract, helping to emulsify and absorb fat-soluble nutrients and drugs.
  • The study utilized giant unilamellar vesicles (GUVs) to investigate the permeation behavior of bile salts and their mixed micelles, using sodium cholate (NaC) and various lipophilic substances.
  • Findings showed that below the critical micelle concentration (CMC), NaC causes endocytic changes in GUVs, while above the CMC, mixed micelles interact with the membrane differently, forming aggregates that migrate into the GUV, with variations observed depending on the type of lipophilic component used.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!