The seminal vesicles (SVs), like much of the male reproductive tract, depend on androgen-driven stromal-epithelial interactions for normal development, structure, and function. The primary function of the SVs is to synthesize proteins that contribute to the seminal plasma and this is androgen dependent. However, the cell-specific role for androgen action in adult SVs remains unclear. This study analyzed the SV in mice with targeted ablation of androgen receptors specifically in smooth muscle cells (PTM-ARKO) to determine in vivo whether it is androgen action in a subset of the SV stroma, the smooth muscle cells, that drives epithelial function and identity. These mice have significantly smaller SVs in adulthood with less smooth muscle and reduced epithelial cell height. Less epithelial cell proliferation was observed in adult PTM-ARKO SVs, compared with controls, and production of seminal proteins was reduced, indicating global impairment of epithelial cell function in PTM-ARKO SVs. None of these changes could be explained by altered serum testosterone or estradiol concentrations. We also demonstrate altered SV responsiveness to exogenous testosterone and estradiol in PTM-ARKO mice, indicating that smooth muscle androgen receptors may limit the SV epithelial proliferative response to exogenous estrogens. These results therefore demonstrate that the smooth muscle cells play a vital role in androgen-driven stromal-epithelial interactions in the SV, determining epithelial cell structure and function as well as limiting the SV epithelial proliferative response to exogenous estrogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033689 | PMC |
http://dx.doi.org/10.1210/en.2009-1339 | DOI Listing |
J Clin Med
December 2024
Institut für Pathologie und Molekularpathologie, Universitätsspital Zürich, 8091 Zürich, Switzerland.
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common female pelvic neoplasms globally. Treatments may be invasive, such as hysterectomy and myomectomy, non-invasive, such as medical therapy or focused ultrasound, or minimally invasive, such as transcervical radiofrequency ablation (TFA). To date, more than 12,000 women have been treated worldwide using TFA with the Sonata System.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics, Swiss Federal Institute of Technology (EPFL), Station 3, 1015 Lausanne, Switzerland.
Photobiomodulation (PBM) therapy, a therapeutic approach utilizing low-level light, has garnered significant attention for its potential to modulate various biological processes. This study aimed at optimizing and investigating the effects of PBM on angiogenesis and mitochondrial metabolic activity. In vitro experiments using human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) were performed to assess PBM's impacts on cell migration, proliferation, endogenous protoporphyrin IX production, mitochondrial membrane potential, Rhodamine 123 fluorescence lifetime, mitochondrial morphology, and oxygen consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!