Background: Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact.
Results: A recent advance in research on data mining is a method capable of learning a classifier from only positive and unlabeled examples, that does not need labeled negative examples. Applied to the reconstruction of gene regulatory networks, we show that this method significantly outperforms the current state of the art of machine learning methods. We assess the new method using both simulated and experimental data, and obtain major performance improvement.
Conclusions: Compared to unsupervised methods for gene network inference, supervised methods are potentially more accurate, but for training they need a complete set of known regulatory connections. A supervised method that can be trained using only positive and unlabeled data, as presented in this paper, is especially beneficial for the task of inferring gene regulatory networks, because only an incomplete set of known regulatory connections is available in public databases such as RegulonDB, TRRD, KEGG, Transfac, and IPA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887423 | PMC |
http://dx.doi.org/10.1186/1471-2105-11-228 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).
View Article and Find Full Text PDFXenotransplantation
January 2025
Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Environmental Toxicology, University of California Davis, Davis, California, USA.
Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!