Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs.

Plant Biotechnol J

Unité de Nutrition Azotée des Plantes, Unité de Recherche 511, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Versailles Cedex, France.

Published: December 2010

Nitrogen (N) metabolism was characterized in the developing ear of glutamine synthetase deficient mutants (gln1-3, gln1-4 and gln1-3/gln1-4) of maize exhibiting a reduction in kernel yield. During the grain-filling period, the metabolite contents, enzyme activities and steady-state levels of transcripts for marker genes of amino acid synthesis and interconversion were monitored in the cob and kernels. The ear of gln1-3 and gln1-3/gln1-4 had a higher free amino acid content and a lower C/N ratio, when compared to the wild type. The free ammonium concentrations were also much higher in gln1-3/gln1-4, and Asn accumulation was higher in gln1-3 and gln1-3/gln1-4. The level of transcripts of ZmAS3 and ZmAS4, two genes encoding asparagine synthetase, increased in the 'aborted kernels' of gln1-3 and gln1-3/gln1-4. The results show that N metabolism is clearly different in developing and 'aborted kernels'. The data support the hypothesis that N accumulated in 'aborted kernels' is remobilized via the cob to developing kernels using Asn as a transport molecule. The two genes ZmAS3 and ZmAS4 are likely to play an important role during this process.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1467-7652.2010.00524.xDOI Listing

Publication Analysis

Top Keywords

amino acid
12
gln1-3 gln1-3/gln1-4
12
'aborted kernels'
12
glutamine synthetase
8
zmas3 zmas4
8
gln1-3/gln1-4
5
analysis amino
4
acid metabolism
4
metabolism ear
4
ear maize
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!