Objectives: Platelet-rich fibrin (PRF)-based membranes have been used for covering alveolar ridge augmentation side in several in vivo studies. Few in vitro studies on PRF and no studies using human periosteal cells for tissue engineering have been published. The aim is a comparison of PRF with the commonly used collagen membrane Bio-Gide as scaffolds for periosteal tissue engineering.

Material And Methods: Human periosteal cells were seeded on membrane pieces (collagen [Bio-Gide] and PRF) at a density of 10(4) cells/well. Cell vitality was assessed by fluorescein diacetate (FDA) and propidium iodide (PI) staining, biocompatibility with the lactate dehydrogenase (LDH) test and proliferation level with the MTT, WST and BrdU tests and scanning electron microscopy (SEM).

Results: PRF membranes showed slightly inferior biocompatibility, as shown by the LDH test. The metabolic activity measured by the MTT and WST tests was higher for PRF than for collagen (BioGide). The proliferation level as measured by the BrdU test (quantitative) and SEM examinations (qualitative) revealed higher values for PRF.

Conclusion: PRF appears to be superior to collagen (Bio-Gide) as a scaffold for human periosteal cell proliferation. PRF membranes are suitable for in vitro cultivation of periosteal cells for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2009.01900.xDOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
human periosteal
12
periosteal cells
12
platelet-rich fibrin
8
scaffolds periosteal
8
periosteal tissue
8
ldh test
8
proliferation level
8
mtt wst
8
prf membranes
8

Similar Publications

Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).

Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.

View Article and Find Full Text PDF

Rhinoplasty is one of the major surgical procedures most popular and it is generally performed modelling the internal bones and cartilage using a closed approach to reduce the damage of soft tissue, whose final shape is determined by means of their new settlement over the internal remodelled rigid structures. An optimal planning, achievable thanks to advanced acquisition of 3D images and thanks to the virtual simulation of the intervention via specific software. Anyway, the final result depends also on factors that cannot be totally predicted regarding the settlement of soft tissues on the rigid structures, and a final objective check would be useful to eventually perform some adjustments before to conclude the intervention.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!