The substitution of PPh(3) for a carbonyl group at the {Fe(CO)(3)} moiety in [Fe(2)(CO)(4)(kappa(2)-phen)(mu-pdt)] results in the formation of the trisubstituted complex [Fe(2)(CO)(3)(PPh(3))(kappa(2)-phen)(mu-pdt)] (2). Unlike its tetracarbonyl precursor, the protonation of 2 at low temperature does not afford any apparent transient terminal hydride species. Hydride formation for [Fe(2)(CO)(3)(L)(kappa(2)-phen)(mu-pdt)] (L = PPh(3), CO) species is also studied by density functional theory calculations, which show that activation barriers to give terminal and bridging hydrides can be remarkably close for this class of organometallic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic100108h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!