The T-cell response to antigen depends upon coordinate signaling between costimulatory and inhibitory receptors. Altered function of either may underlie the pathophysiology of autoimmune and/or chronic inflammatory diseases and manipulation of these pathways is an important emerging area of therapeutics. We report here that the immunosuppressant drug CTLA4-Ig inhibits the effector phase of allergic airway inflammation through a CD28-independent, nitric oxide synthase dependent mechanism. Using mice deficient in both B and T lymphocyte attenuator (BTLA) and CD28, we demonstrate that simultaneous deficiency of an inhibitory receptor can rescue the in vivo but not the in vitro CD28-deficient phenotype. Furthermore, we demonstrate that inflammation in the CD28/BTLA-double-deficient mice is suppressed by CTLA4-Ig. This suppression is reversed by treatment with the Nitric Oxide Synthase (NOS) inhibitor, N(6)-methyl-L-arginine acetate (L-NMMA). In addition CTLA4-Ig was ineffective at inhibiting inflammation in NOS2-deficient mice when given at the effector phase. Thus, CD28 and BTLA coordinately regulate the in vivo response to inhaled allergen, and CTLA4-Ig binding to B7-proteins inhibits the effector phase of inflammation by a CD28-independent, NOS-dependent mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039706PMC
http://dx.doi.org/10.1002/eji.200940282DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
effector phase
12
ctla4-ig inhibits
8
allergic airway
8
airway inflammation
8
cd28-independent nitric
8
inhibits effector
8
inflammation cd28-independent
8
oxide synthase
8
ctla4-ig
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!