Herbs are a rich source of bioactive phytochemicals such as carotenoids, which are known to exert various positive biological effects. However, there is very limited information in the literature regarding the content and bioavailability of carotenoids from commonly consumed herbs. Therefore, the objectives of the present study were first, to determine the carotenoid content of eight herbs namely basil (Ocimum basilicum), coriander (Coriandrum sativum), dill (Anethum graveolens), mint (Metha L.), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), and tarragon (Artemisia dracunculus L.); and second, to assess carotenoid bioaccessibility from these herbs using a simulated human in vitro digestion model. Carotenoid bioaccessibility is defined as the amount of carotenoids transferred to micelles after digestion when compared with the original amount present in the food. The content of individual carotenoids varied significantly among the herbs tested. Carotenoid bioaccessibility varied from 0 to 42.8%. Basil and coriander, and their respective micelles, contained the highest levels of beta-carotene, beta-cryptoxanthin, and lutein + zeaxanthin. Our findings show that herbs are rich sources of carotenoids and that these foods can significantly contribute to the intake of bioaccessible carotenoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11130-010-0167-3 | DOI Listing |
RSC Adv
January 2025
Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil. Electronic address:
This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China. Electronic address:
In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.
View Article and Find Full Text PDFFood Chem
March 2025
Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, United States. Electronic address:
Previous results have been mixed as to whether the emulsifying agent lecithin increases carotenoid bioaccessibility and Caco-2 cellular uptake. The dose-response effect of lecithin (0-5 mg) on carotenoid bioaccessibility and Caco-2 cellular uptake was investigated in vitro using a mixture of β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. Resulting micelles were incubated with Caco-2 cells for 4 h.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China. Electronic address:
Astaxanthin, a lipid-soluble carotenoid, is widely recognized for its health-promoting properties. However, its use in functional foods is limited due to its low water solubility, chemical instability, and poor bioavailability. This study evaluated the potential of esterified starch-stabilized emulsions as astaxanthin carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!