A radiotherapy treatment plan is based on an anatomical 'snapshot' of the patient acquired during the preparation stage using a kVCT (kilovolt computed tomography) scanner. Anatomical changes will occur during the treatment course, in some cases requiring a new treatment plan to deliver the prescribed dose. With the introduction of 3D volumetric on-board imaging devices, it became feasible to use the produced images for dose recalculation. However, the use of these on-board imaging devices in clinical routine for the calculation of dose depends on the stability of the images. In this study the validation of tomotherapy MVCT (megavolt computed tomography) produced images, for the purpose of dose recalculation by the Planned Adaptive software, has been performed. To investigate the validity of MVCT images for dose calculation, a treatment plan was created based on kVCT-acquired images of a solid water phantom. During a period of 4 months, MVCT images of the phantom have been acquired and were used by the planned adaptive software to recalculate the initial kVCT-based dose on the MVCT images. The influence of the adapted IVDTs (image value-to-density tables) has been investigated as well as the effect of image acquisition with or without preceding airscan. Output fluctuations and/or instabilities of the imaging beam result in MV images of different quality yielding different results when used for dose calculation. It was shown that the output of the imaging beam is not stable, leading to differences of nearly 3% between the original kV-based dose and the recalculated MV-based dose, for solid water only. MVCT images can be used for dose calculation purposes bearing in mind that the output beam is liable to fluctuations. The acquisition of an IVDT together with the MVCT image set, that is going to be used for dose calculation, is highly recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/55/11/N03DOI Listing

Publication Analysis

Top Keywords

dose calculation
20
mvct images
16
imaging beam
12
dose
12
treatment plan
12
images dose
12
images
9
computed tomography
8
on-board imaging
8
imaging devices
8

Similar Publications

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Background: Standard radiotherapy (RT) for locally advanced NSCLC (LA-NSCLC) employs a uniform dose of approximately 60 Gy. Recent trials demonstrated that radiotherapy dose escalation may not improve outcomes and may cause added toxicity. XXX previously performed a single-arm trial testing a personalized, risk-adapted, and de-intensified RT strategy.

View Article and Find Full Text PDF

Background: Uzbekistan, a highly endemic country for hepatitis B virus (HBV), introduced infant vaccination with hepatitis B vaccine (HepB) in 2001. Since 2002, it had ≥90 % reported immunization coverage for ≥3 doses of HepB (HepB3) and the birth dose (HepB-BD). However, the impact of HepB vaccination and the progress towards achieving the regional hepatitis B control and global viral hepatitis B elimination goals had not been assessed.

View Article and Find Full Text PDF

Adenomyosis is characterized by abnormal uterine bleeding, dysmenorrhea and subfertility. Increased expression of angiogenesis markers in adenomyosis presents a treatment opportunity and was studied in an adenomyosis mouse model. Mice were administered tamoxifen (1 mg/kg) on neonatal days 2-5.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!