AI Article Synopsis

  • The study examines the effectiveness of a new ulnar collateral ligament (UCL) reconstruction method using the ZipLoop versus the traditional Jobe technique.
  • Both methods were tested on cadaver elbows, showing that while both overcorrected valgus stability in an unloaded state, they undercorrected at 20 degrees of flexion under load.
  • Ultimately, both reconstruction techniques demonstrated similar failure characteristics, indicating that the new method may be a viable alternative to the traditional approach.

Article Abstract

Background: Techniques for ulnar collateral ligament (UCL) reconstruction have evolved since its original description.

Hypothesis: Ulnar collateral ligament reconstruction using the ZipLoop for ulnar-sided fixation, as combined with the humeral docking technique supplemented with an interference screw, will restore valgus stability similar to that of the Jobe technique and the native ligament.

Study Design: Controlled laboratory study.

Methods: Kinematic testing was performed on 8 matched pairs of cadaver elbows with an electromagnetic tracking system through an arc of motion for the intact, disrupted, and reconstructed states of the UCL in an unloaded and loaded condition. From each pair, the docking technique using the ZipLoop for ulnar fixation and humeral docking technique supplemented with an interference screw and the traditional Jobe technique were performed with matched gracilis allograft tendons. After kinematic testing, both reconstruction groups were tested to failure at 70 degrees of flexion.

Results: Kinematic results for the unloaded condition showed that both reconstruction techniques significantly overcorrected (less valgus angulation) the specimens between 40 degrees and 120 degrees of flexion when compared with the intact ligament (all P values < .027). Under loaded conditions, the ulnar trajectories for both reconstruction techniques exhibited significantly greater valgus angulation (undercorrection) at 20 degrees of flexion (Jobe, P = .0084; ZipLoop, P = .0289) when compared with the intact ligament but were not significantly different over the remaining arc of motion. Failure testing resulted in no significant statistical difference between the 2 reconstruction groups. Failure testing demonstrated that humeral tunnel egress, midsubstance elongation, and ulnar tunnel egress of the ligament were similar between the reconstruction techniques.

Conclusion: The docking technique using the ZipLoop for ulnar-sided fixation is biomechanically equivalent to the Jobe technique for UCL reconstruction. Both reconstruction techniques restore valgus stability similar to that of the native UCL ligament.

Clinical Relevance: This modification in the docking technique restores elbow kinematics while eliminating the risk of ulnar bone bridge fracture, and it allows for retensioning of the graft after cortical fixation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546510363463DOI Listing

Publication Analysis

Top Keywords

docking technique
20
ulnar collateral
12
collateral ligament
12
ligament reconstruction
12
ulnar-sided fixation
12
jobe technique
12
reconstruction techniques
12
reconstruction
10
technique
9
ucl reconstruction
8

Similar Publications

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification.

Drug Des Devel Ther

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.

Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!