Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling.

J Cell Sci

Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.

Published: June 2010

Dysferlin is a Ca(2+)-binding protein found in many different cell types. It is required for membrane wound repair in muscle, but it is not known whether it has the same function in other cells. Here we report the activation of an intercellular signaling pathway in sea urchin embryos by membrane wounding that evokes Ca(2+) spikes in neighboring cells. This pathway was mimicked by ATP application, and inhibited by apyrase, cadmium, and omega-agatoxin-IVA. Microinjection of dysferlin antisense phosphorodiamidate morpholino oligonucleotides blocked this pathway, whereas control morpholinos did not. Co-injection of mRNA encoding human dysferlin with the inhibitory morpholino rescued signaling activity. We conclude that in sea urchin embryos dysferlin mediates Ca(2+)-triggered intercellular signaling in response to membrane wounding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873225PMC
http://dx.doi.org/10.1242/jcs.066084DOI Listing

Publication Analysis

Top Keywords

membrane wounding
12
intercellular signaling
8
sea urchin
8
urchin embryos
8
membrane
4
wounding triggers
4
triggers atp
4
atp release
4
release dysferlin-mediated
4
dysferlin-mediated intercellular
4

Similar Publications

Extracorporeal membrane oxygenation in trauma: a single-center retrospective observational study.

Eur J Trauma Emerg Surg

January 2025

ECMO Center Karolinska, Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Akademiska straket 14, Stockholm, 17176, Sweden.

Purpose: Globally, trauma is a leading cause of death in young adults. The use of extracorporeal membrane oxygenation (ECMO) in the trauma population remains controversial due to the limited published research. This study aimed to analyze 30-day survival of all the trauma ECMO patients at our center, with respect to injury severity score (ISS) and new injury severity score (NISS).

View Article and Find Full Text PDF

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!