Tumor metastasis of epithelium-derived tumors is the major cause of death from malignant tumors. Overexpression of claudin is observed frequently in malignant tumors. However, claudin-targeting antimetastasis therapy has never been investigated. We previously prepared a claudin-4-targeting antitumor molecule that consisted of the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) fused to protein synthesis inhibitory factor (PSIF) derived from Pseudomonas exotoxin. In the present study, we investigated whether claudin CPE receptors can be a target for tumor metastasis by using the C-CPE-fused PSIF as a claudin-targeting agent. One of the most popular murine metastasis models is the lung metastasis of intravenously injected B16 cells. Therefore, we first investigated the effects of the C-CPE-fused PSIF on lung metastasis of claudin-4-expressing B16 (CL4-B16) cells. Intravenous administration of the C-CPE-fused PSIF suppressed lung metastasis of CL4-B16 cells but not B16 cells. Injection of C-CPE-fused PSIF also inhibited tumor growth and spontaneous lung metastasis of murine breast cancer 4T1 cells inoculated into the subcutis. Treatment with C-CPE-fused PSIF did not show apparent side effects in mice. These findings indicate that claudin targeting may be a novel strategy for inhibiting some tumor metastases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.110.168070 | DOI Listing |
Eur J Pharm Sci
February 2014
Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan. Electronic address:
We previously found that claudin (CL) is a potent target for cancer therapy using a CL-3 and -4-targeting molecule, namely the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE). Although CL-3 and -4 are expressed in various normal tissues, the safety of this CL-targeting strategy has never been investigated. Here, we evaluated the tissue distribution of C-CPE in mice.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
August 2010
Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
Tumor metastasis of epithelium-derived tumors is the major cause of death from malignant tumors. Overexpression of claudin is observed frequently in malignant tumors. However, claudin-targeting antimetastasis therapy has never been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!