Introduction: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis.

Material And Methods: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied.

Results: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant fracture patterns.

Conclusion: In the present study, we have successfully simulated fracture mechanisms, obtained adequate fracture locations and achieved an indication of the fracture morphology. The method of fracture simulation employed showed good agreement with known clinical data and data from prior mechanical testing. This substantiates the validity of fracture simulation for future studies examining tibial fractures, fracture healing and prevention.

Download full-text PDF

Source

Publication Analysis

Top Keywords

finite element
16
fracture
12
element analysis
8
tibial fractures
8
tibial shaft
8
fracture mechanisms
8
lower leg
8
fracture locations
8
future studies
8
healing biomechanical
8

Similar Publications

Objective: Reverse obliquity intertrochanteric fracture is an unstable type of fracture. Current guidelines recommend intramedullary fixation, but there are still complications such as screw removal, hip varus, nail withdrawal, and nail fracture. The objective of this study was to use finite element analysis to compare the biomechanical properties of the novel proximal femoral bionic nail (PFBN), proximal femoral nail antirotation (PFNA), and combined compression interlocking intramedullary nail (InterTan) in the treatment of reverse obliquity intertrochanteric fractures (AO/OTA 31-A3.

View Article and Find Full Text PDF

Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.

Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

The low durability of bioprosthetic heart valves (BHV), between 10-15 years, is associated with the development of leaflets flutter. Despite increasing calcification and structural damage of the BHV, leaflets flutter is an understudied condition. Therefore, the objective of this study is compare the oscillation characteristics of BHV leaflets obtained by the finite element method (FEM) technique and by the fluid-structural interaction (FSI) technique.

View Article and Find Full Text PDF

Background: The presence of mandibular third molars has been associated with the risk of mandibular fractures, highlighting the need for comprehensive studies considering the interaction with other mandibular structures. This study investigates how mandibular third molars and neighboring tissues can influence the structural fragility of the mandible using finite element analysis.

Material And Methods: A finite element analysis study following the guidelines proposed by RIFEM 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!