A mechanical x-ray chopper has been designed to perform microsecond time-resolved crystallographic studies at the DIAMOND synchrotron I19 beamline. It consists of two asymmetric absorbers rotating synchronously at frequencies from 0 to 50 Hz in the same direction around a rotation axis that is parallel to the x-ray beam. The duration of the x-ray pulses produced by the chopper is determined by the relative phase between the two blades, which can be adjusted. The chopper system presented in this paper offers a time resolution suitable for conducting in situ experiments that afford the crystal structure of materials while in their transient (>10 micros) photoactivated excited states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3358939 | DOI Listing |
Small
January 2025
Department of Materials Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan.
Ferroelectric properties of HfZrO are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar-axis-oriented HfZrO layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)-oriented HfZrO thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state-of-the-art ferroelectric polarization up to 78.
View Article and Find Full Text PDFMethods Enzymol
November 2024
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, United Kingdom. Electronic address:
Time-resolved X-ray crystallography experiments were first performed in the 1980s, yet they remained a niche technique for decades. With the recent advent of X-ray free electron laser (XFEL) sources and serial crystallographic techniques, time-resolved crystallography has received renewed interest and has become more accessible to a wider user base. Despite this, time-resolved structures represent < 1 % of models deposited in the world-wide Protein Data Bank, indicating that the tools and techniques currently available require further development before such experiments can become truly routine.
View Article and Find Full Text PDFNat Commun
November 2024
Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
Time-resolved serial crystallography at X-ray Free Electron Lasers offers the opportunity to observe ultrafast photochemical reactions at the atomic level. The technique has yielded exciting molecular insights into various biological processes including light sensing and photochemical energy conversion. However, to achieve sufficient levels of activation within an optically dense crystal, high laser power densities are often used, which has led to an ongoing debate to which extent photodamage may compromise interpretation of the results.
View Article and Find Full Text PDFACS Infect Dis
December 2024
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Antibiotic resistance in bacteria is a major global health concern. The wide spread of carbapenemases, bacterial enzymes that degrade the last-resort carbapenem antibiotics, is responsible for multidrug resistance in bacterial pathogens and has further significantly exacerbated this problem. is one of the leading nosocomial pathogens due to the acquisition and wide dissemination of carbapenem-hydrolyzing class D β-lactamases, which have dramatically diminished available therapeutic options.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
Hydrogen-bonded organic frameworks (HOFs) composed of multicomponent molecules in a non-stoichiometric composition have drawn great interest due to their tunable properties. However, the photobehavior of the single crystals of such mixed HOFs has not been explored. Here, we report on the synthesis, characterization and photobehavior of single crystalline non-stoichiometric HOFs (NS-HOFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!